Grupo Águas de Portugal

Erros Correntes nos Projetos e Obras de Instalações Prediais de Águas e Esgotos

1. Considerações gerais sobre a qualidade das instalações

De acordo com a International Standardization Organization (ISO) "qualidade" é a adequação ao uso e a conformidade com as exigências. Na atualidade, o aumento da competitividade, por um lado, e as exigências crescentes dos consumidores, decorrentes de um generalizado aumento do nível de vida, tornam este conceito de "qualidade" cada vez mais frequente e abrangente.
Neste contexto, constata-se que as instalações de águas e esgotos são uma das principais origens de problemas em edifícios em Portugal, podendo inclusivamente colocar questões de saúde pública, sendo importante implementar e perspetivar estratégias para o aumento da qualidade nestas instalações.

Na verdade, embora não seja conhecida, com rigor, a percentagem das deficiências e anomalias nos edifícios que deve ser atribuída a erros e defeitos na conceção e/ ou na construção das instalações de águas e esgotos, existe a noção de que a distribuição de água e a drenagem de esgotos domésticos e pluviais estão na base de mais de 90% dos problemas e incomodidades detetados em edifícios.
Os erros e defeitos nestas instalações traduzem-se, em regra, em significativos fatores de desconforto (ruídos, odores, etc.), em durabilidades reduzidas (roturas, avarias frequentes, etc.) e em problemas de humidades, obrigando a intervenções que são, em geral, de custo significativo e de elevada incomodidade.
Contudo, apesar de estarem na base da maioria dos problemas em edifícios, as instalações sanitárias raramente ultrapassam o valor de 5% do custo total da obra, tornando-se evidente a necessidade de prestar mais atenção a esta componente das edificações, onde uma melhoria geral da qualidade pode representar uma redução muito significativa no número de problemas atualmente detetados, sem um acréscimo sensível do custo final do edifício.
Do ponto de vista construtivo, poderão estabelecer-se diversos atributos a satisfazer, como a resistência, a durabilidade, a eficiência, etc. Neste âmbito, as questões de qualidade podem resultar de inadequada seleção, na fase de projeto, de materiais e acessórios ou de equipamentos e dispositivos de utilização, ou, em obra, de montagens incorretas ou de incumprimentos de projeto. De um modo geral, os materiais propostos devem possuir adequadas resistências químicas, mecânicas e térmicas, face às características do fluido a transportar e às condições de assentamento, o que nem sempre sucede.
Ao nível das redes de distribuição predial de água, alguns problemas podem surgir, por exemplo, em relação às tubagens metálicas. O contacto de materiais com diferentes nobrezas é um fator que contribui para a rápida corrosão das tubagens e acessórios de nobreza inferior, merecendo a aplicação do cobre uma particular atenção. Não deve negligenciar-se, nesta matéria, a integração nos circuitos de alguns equipamentos (como painéis solares, esquentadores, etc.), pois nem sempre é assegurada a compatibilidade entre os materiais utilizados nos seus depósitos e/ou circuitos interiores e os materiais utilizados na rede.
Mas é ao nível dos materiais termoplásticos que a situação se pode considerar mais grave em Portugal, em particular no que se refere às redes de drenagem em PVC. Face à generalização deste material na década de 70 , foi publicada em 1977 a primeira Norma Portuguesa - NP I487, relativa a tubagens de PVC para drenagem de águas residuais, onde se definiam as principais características e os principais requisitos a que deveria obedecer o material. Segundo a Norma, "... as características especificadas referem-se apenas aos casos em que a temperatura do líquido a transportar não excede, em regime permanente, $40^{\circ} \mathrm{C} \mathrm{e}$, em curtos períodos, $60^{\circ} \mathrm{C}$.'
Esta Norma permitia a aplicação em drenagens de águas residuais de tubos com parede de espessura mínima de ।,8 mm, pressupondo o respeito, naturalmente, pelos limites de aplicação previstos no texto da Norma, em particular no que se refere a temperaturas. Contudo, é frequente - nas máquinas de lavar roupa, por exemplo -, a descarga de águas residuais a temperaturas superiores a $60^{\circ} \mathrm{C}\left(\right.$ até $90^{\circ} \mathrm{C}$), o que, desde logo, invalida a aplicação do PVC com as características referidas na NP |487. São conhecidos inúmeros problemas, em edifícios construídos ao longo das últimas décadas, resultantes desta aplicação indevida.
As limitações do PVC "série fria" levaram ao desenvolvimento de novos produtos para o setor da drenagem predial e, no âmbito do PVC, à publicação de diversa normalização europeia para correção da situação, a qual já
foi transposta para Portugal. A NP EN I329, por exemplo, com o título "Sistemas de Tubagens em Plástico para Esgoto (temperatura baixa e elevada) no Interior dos Edifícios", foi publicada em Portugal em setembro de 2002, implicando um indispensável aumento da espessura dos tubos de PVC em 40\%, passando a parede da tubagem a ter como mínimo $3,0 \mathrm{~mm}$ (para diâmetros até 90 mm), de modo a melhorar a sua resistência térmica.

Observa-se, contudo, que o PVC fabricado de acordo com a NP EN I329 não é, habitualmente, adotado, com graves prejuízos para o setor, em resultado o desconhecimento destas condicionantes ou, mais grave, da sua aplicação com consciência da incorreção, por meras razões económicas.
Na fase de construção, mesmo com uma correta seleção e ligação de tubos e acessórios, a falta de atenção em relação ao elevado coeficiente de dilatação de alguns materiais termoplásticos, originando tensões excessivas no material, ou a incorreta colocação de suportes em tubagens suspensas, provocando deformaçães e perdas de linearidade, são também situações recorrentes.
No que se refere aos dispositivos de utilização, deve ser assegurada a sua compatibilidade com as pressões máximas e mínimas que se poderão verificar no local da sua instalação. Em relação às pressões máximas, é importante notar que existem dispositivos comercializados em Portugal para os quais a pressão de serviço máxima recomendada pelo fabricante é inferior ao limite máximo estabelecido pelo Regulamento Geral nacional (de 600 kPa), pelo que se torna necessário verificar, em cada caso, se o dispositivo especifico proposto é adequado à pressão máxima prevista no local da sua aplicação, sob pena de ficar comprometida a sua durabilidade.
No âmbito do comportamento físico-ambiental, poderão referir-se os problemas de ruído, de temperatura e de pressão (e das suas variações), que são indicadores relevantes do nível de conforto da instalação. Nas instalações prediais de águas, por exemplo, a conceção das instalações é feita, com frequência, sem atender às variações e aos valores limite de pressões na rede pública (à entrada da instalação), gerando utilizações sem conforto e problemas de funcionamento de alguns dispositivos.
Em relação às pressões mínimas, deve ser verificada, caso a caso, a adequabilidade dos dispositivos específicos propostos, face à pressão residual determinada pelo cálculo para o local da sua aplicação, em particular no que se refere a fluxómetros, misturadoras termostáticas, dispositivos de fechamento automático e outros dispositivos não correntes, o que, na prática, não é geralmente efetuado.
O subdimensionamento das redes de águas gera problemas de ruído e de variações súbitas de pressão e temperatura. Os problemas de ruído também se manifestam com frequência ao nível das redes de drenagem, devido a traçados inadequados, insuficiente isolamento de courettes ou deficiente instalação de equipamentos. Neste domínio, deve ainda notar-se que muitos dos dispositivos e equipamentos disponíveis no mercado, de menor qualidade, geram excessivos níveis de ruído.
Ao nível dos equipamentos de aquecimento e dos grupos hidropneumáticos, o seu subdimensionamento é, infelizmente, comum, situação motivada, em geral, por razões económicas. As consequências revelam-se, no primeiro caso, em durações de utilização ou temperaturas de distribuição inferiores às desejáveis e, no segundo caso, em significativas variações de pressão na instalação, com consequências também na variação de temperaturas, ou em durabilidades reduzidas do equipamento.

O desempenho das instalações, em termos de saúde e bem-estar, pode depender também de aspetos diretamente relacionados com as redes prediais. A este propósito, podem referir-se, como exemplo, as situações de contaminação através da rede de drenagem e decorrentes de problemas de sifonagem nos pisos baixos, por fenómenos de pressão reversa ou até devido a situações de contaminação por águas provindas de outras origens que não a da rede pública.

Nas redes de águas, as situações mais conhecidas relacionam-se com a presença de bactérias coliformes e Legionella, sendo públicos diversos problemas de particular gravidade e de difícil resolução em muitos países.
Em relação a Portugal, o controlo natural da Legionella resulta da variação sazonal da temperatura, dado que a amplitude térmica nos meses de inverno provoca a diminuição e adormecimento de colónias.

O aumento de temperatura tem particular impacto nos ecossistemas microbiológicos favoráveis ao desenvolvimento da Legionella, efeito que pode ser agravado pelas previsíveis alterações climáticas, amplificando o risco do seu crescimento em todos os ambientes artificiais colonizáveis e tornando cada vez mais urgente a implementação de medidas de prevenção.

Nos sistemas prediais de abastecimento de água os principais fatores que propiciam o aparecimento das condições ambientais ótimas para o desenvolvimento da Legionella são os seguintes:

- Temperaturas da água entre os $20^{\circ} \mathrm{C}$ e os $50^{\circ} \mathrm{C}$ (crescimento ótimo entre os $35^{\circ} \mathrm{Ce} 45^{\circ} \mathrm{C}$);
- Condições de pH entre os 5 e 8 , podendo estar presente no caso de valores inferiores;
- Zonas preferenciais de estagnação de água (reservatórios, tubagens das redes prediais, tanques de arrefecimento, pontos de extremidade das redes pouco utilizados, etc.);
- Presença de L-cisteína, sais de ferro e de zinco (devido aos fenómenos de corrosão) e matéria orgânica;
- Aparecimento de sedimentos na água que suportam o microbiota, como algas e protozoários;
- Presença de bio filmes associados aos fenómenos anteriores e ao aparecimento da matéria orgânica;
- Humidade relativa superior a 60\%;
- Presença de materiais porosos e de derivados de silicone nas redes prediais potenciando o crescimento bacteriano.

Da análise destes fatores pode facilmente concluir-se que um desenvolvimento significativo da Legionella se pode observar, por exemplo, em redes prediais de águas quentes (em particular quando se verifica elevada corrosão e/ou períodos de estagnação) ou em certos componentes de sistemas exteriores da habitação (em particular após períodos de paragem e em épocas de temperatura ambiente mais elevada). Os sistemas e equipamentos que oferecem maior risco são aqueles que produzem aerossóis, através da formação de gotas de água contaminadas (com um tamanho de $5 \mu \mathrm{~m}$), que podem penetrar no sistema respiratório atingindo os alvéolos pulmonares e causar a infeção (chuveiros, aspersores, etc.)

No que se refere ao traçado das redes, a utilização de redes emalhadas, que é comum em redes públicas, não constitui uma prática corrente em edifícios, mas defende-se que esta solução deve ser equacionada sempre que exista a possibilidade de pontos de estagnação prolongada em sistemas suscetíveis de contaminação pela Legionella.

Em equipamentos com funcionamento esporádico (chuveiros de emergência, por exemplo) devem igualmente estabelecer-se traçados que evitem a acumulação de água após as utilizações (situação esta já acautelada em alguns países europeus como, por exemplo, a Holanda). No que respeita à escolha dos materiais, existem alguns estudos relativos ao contributo dos diversos tipos de tubagens para o desenvolvimento de bio filmes e para a multiplicação da Legionella em redes interiores de águas.

Estes estudos revelaram, por exemplo, que as concentrações de Legionella em tubos de cobre são muito inferiores às concentrações observadas em tubos de aço inox e de PEX, pelo menos numa fase inicial. Em regra, admite-se que a maioria dos materiais termoplásticos (como o polipropileno, o polibutileno, o PEX e o PVC-C) pode ser favorável à proliferação de biofilmes.

Grupo Águas de Portugal

2. Redes prediais e saúde pública

As redes prediais de águas e esgotos constituem a única instalação dentro de um edifício onde existem responsabilidades por parte da entidade gestora do sistema público. Essa responsabilidade tem a ver com riscos sanitários, em particular no que se refere à qualidade da água de abastecimento na torneira do consumidor.
É frequente, sobretudo em zonas de caraterísticas mais rurais a utilização de águas provindas de poços, minas ou furos particulares que, muito frequentemente se inserem nas redes prediais em virtude de deficiente construção ou isolamento das redes, possibilitando a contaminação ou da rede pública ou das próprias redes prediais.
Os levantamentos de erros e inconformidades em projetos e obras, realizados por diferentes entidades entre as quais se destaca a ANQIP , revelam inúmeros problemas e riscos para a saúde pública, para além de numerosas deficiências técnicas, que a dispensa de apreciação de projetos e das vistorias tem ainda potenciado a ausência de uma cultura de qualidade no setor, bem como a falta de atualização e de exigências mínimas ao nível da qualificação de projetistas e instaladores, em contraste com o que é exigido em relação a outras especialidades.

3. Estatística de erros correntes em projetos e obras

Na generalidade dos municípios portugueses, atesta-se que a garantia do cumprimento das normas legais e regulamentares aplicáveis aos projetos de redes prediais de águas e esgotos é suficientemente viabilizada pela apresentação de um termo de responsabilidade, subscrito pelos correspondentes autores legalmente habilitados para o efeito. A apreciação prévia pela Entidade Gestora pode ser dispensada, uma vez que esta avaliação assume caráter facultativo em Portugal. Algumas Entidades Gestoras, porém, alteram esta prática, que se tem revelado limitadora do progresso neste domínio e da qualidade das instalações, através de mecanismos de apreciação/ certificação de projetos.
Reconhece-se, portanto, que o adequado funcionamento das redes prediais de águas e esgotos pode ser inequivocamente potenciado quando estas são corretamente projetadas e instaladas, mas evidenciam-se frequentemente várias incorreções, tanto na fase de elaboração dos projetos como na correspondente fase de execução, que podem afetar o conforto das utilizações ou gerar problemas de saúde pública. Logo, transversalmente à revisão criteriosa dos projetos das especialidades de águas e esgotos, em consonância com a verificação da apropriada execução das obras, é claramente benéfica a adoção de um modelo de atuação preventiva que possibilite a deteção precoce de inconformidades técnicas e a sua atempada correção.
Neste contexto, destacam-se diversos erros que se repercutem em decréscimos de qualidade nas redes prediais, resultando sobretudo de falta de formação e atualização técnica dos autores dos projetos e dos técnicos responsáveis pela execução das obras, de divergências de interpretação face às disposições regulamentares, assim como de coordenação desajustada entre os vários intervenientes na construção dos edifícios ou exiguidades dos prazos de execução a cumprir.
O resumo que se apresenta, baseado no levantamento e na caracterização de erros correntes em projetos e instalações de redes prediais de águas e esgotos, foi realizado pela ANQIP - Associação Nacional para a Qualidade nas Instalações Prediais, ao longo de vários meses e anos.
Na Tabela I resumem-se os principais erros detetados no projeto e em obra (Tabela 2).

Tabela I. Erros correntes em projetos de redes prediais de águas e esgotos

REDES DE DISTRIBUIÇÃO DE ÁGUA				REDES DE DRENAGEM DE ÁGUAS RESIDUAIS
Velocidades de escoamento excessivas	13%	Tubagem com diâmetro erradamente dimensionado	28%	
Perdas de carga subestimadas	12%	Ligações incorretas entre tubagens	20%	
Pressão insuficiente na rede predial	12%	Condições irregulares de ventilação da instalação	12%	
Constituição incompleta do projeto	10%	Inexistência de bocas de limpeza	11%	
Erradas condições de assentamento das tubagens	10%	Tubagem de material inadequado ou omisso	9%	
Tubagem com diâmetro subdimensionado	10%	Constituição incompleta do projeto	8%	
Tubagem de material inadequado ou omisso	9%	Sistema de bombagem inexistente ou inadequado	7%	
Ausência de válvulas na instalação	9%	Implantação incorreta de câmaras de inspeção	5%	
Simultaneidades de cálculo desajustadas	7%			
Sistema de bombagem inexistente ou inadequado	4%			
Incorreta implantação de contadores	4%			

Tabela 2. Erros correntes em obras de redes prediais de águas e esgotos

REDES DE DISTRIBUIÇÃO DE ÁGUA		REDES DE DRENAGEM DE ÁGUAS RESIDUAIS		
Alteração dos diâmetros das tubaģens	32%	Condiçães irregulares de ventilação da instalação	23%	
Alteração da natureza dos materiais das tubagens	18%	Incorreta construção de câmaras de inspeção	21%	
Variação do número de dispositivos projetados	13%	Ligações incorretas entre tubagens	21%	
Incorreta implantação das tubagens	10%	Variação do número de dispositivos projetados	9%	
Inadequada instalação de contadores e acessórios	9%	Alteração dos diâmetros das tubagens	9%	
Aplicação incorreta ou omissão de válvulas	8%	Ausência de bocas de limpeza previstas em projeto	7%	
Deficiências em reservatórios prediais	4%	Alteração da natureza dos materiais das tubagens	4%	
Ligações com risco de conexão cruzada	4%	Incorreta separação das redes	4%	
Outros	2%			

