SUEZ STRATEGIC PARTNER FOR MEMBRANE PLANTS

4

5

6

General presentation (*Fernando Salvador Marques*)

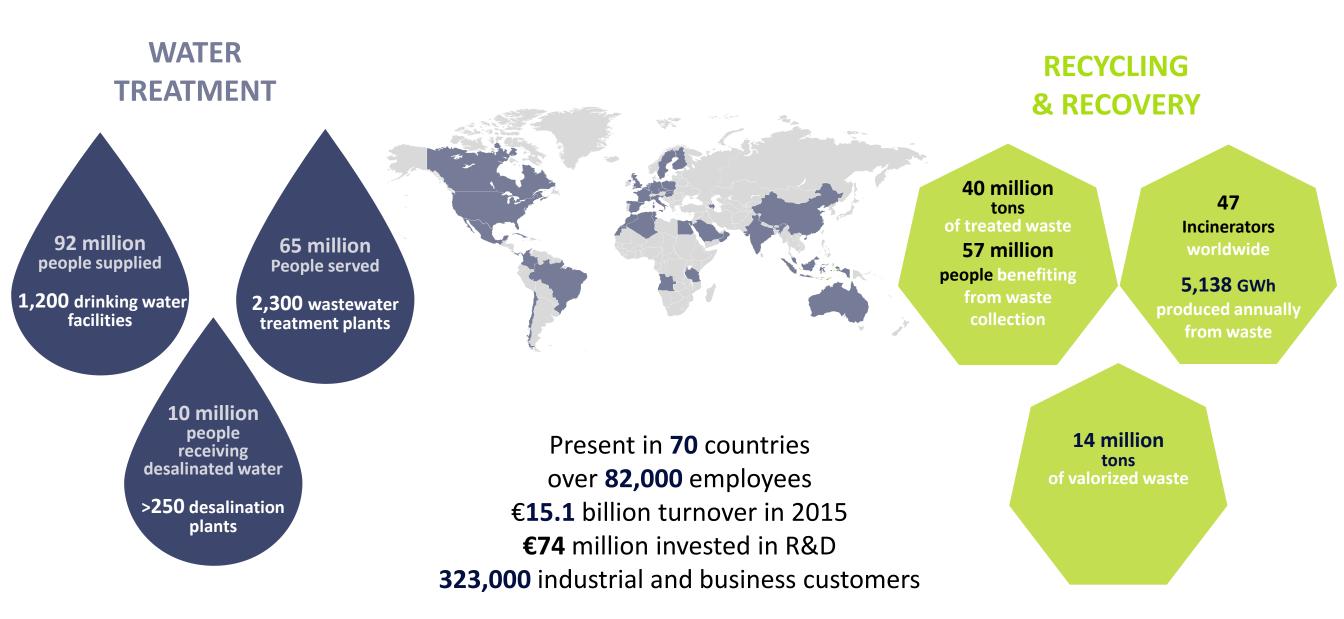
Membrane systems (João Farinha)

3 Ultrafiltration WTP & WWTP (*Luis Urrutia*)

Membrane Biological Reactor (Luis Urrutia)

Electrodialysis reversal (Luis Urrutia)

Reverse osmosis (João Farinha)



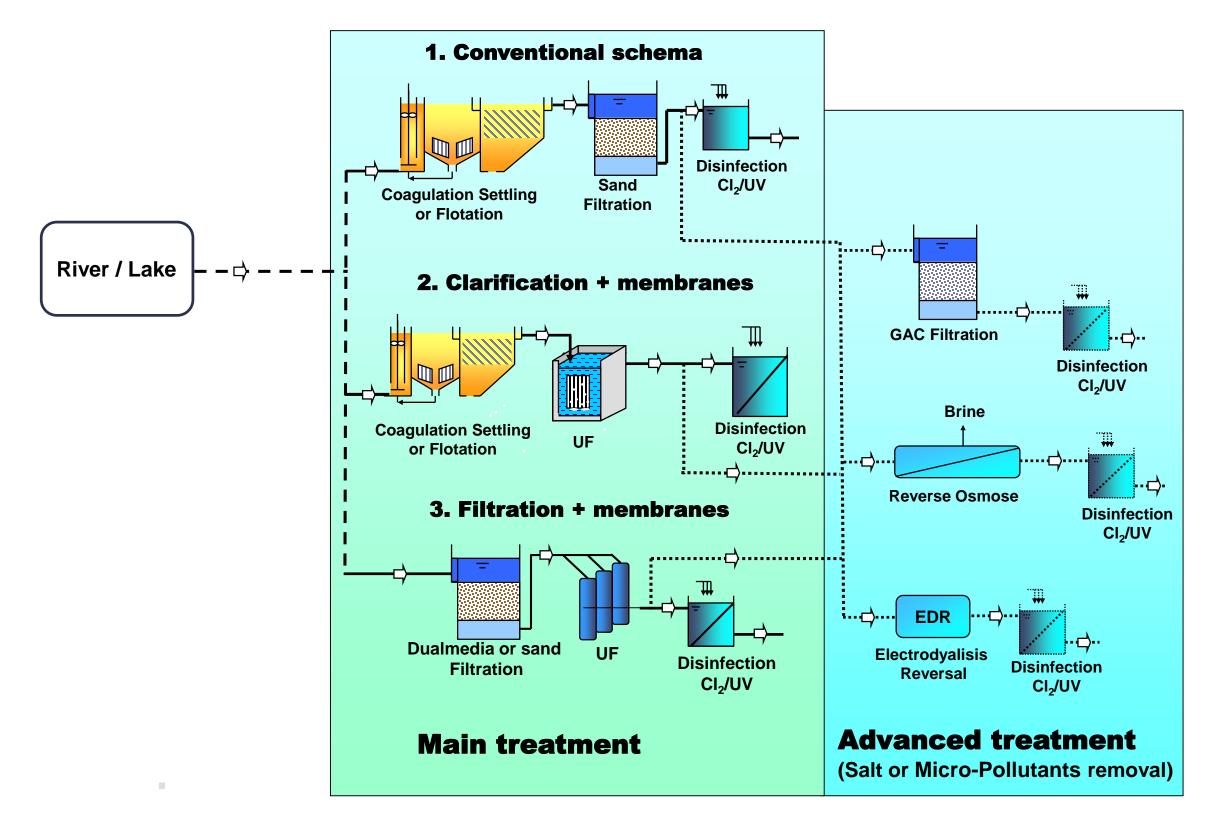
1. GENERAL PRESENTATION

SUEZ ready for the resource revolution

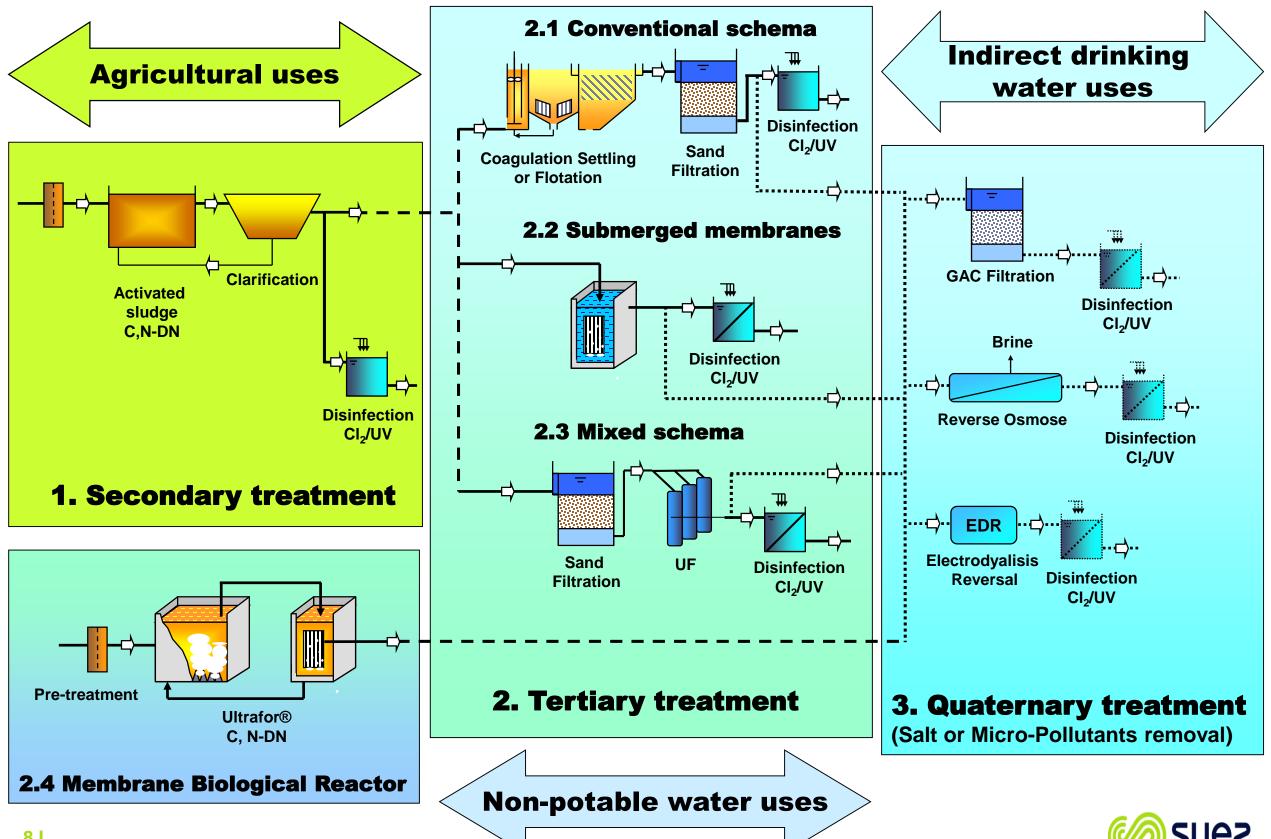
SUEZ at a glance

SUEZ ready for the resource revolution

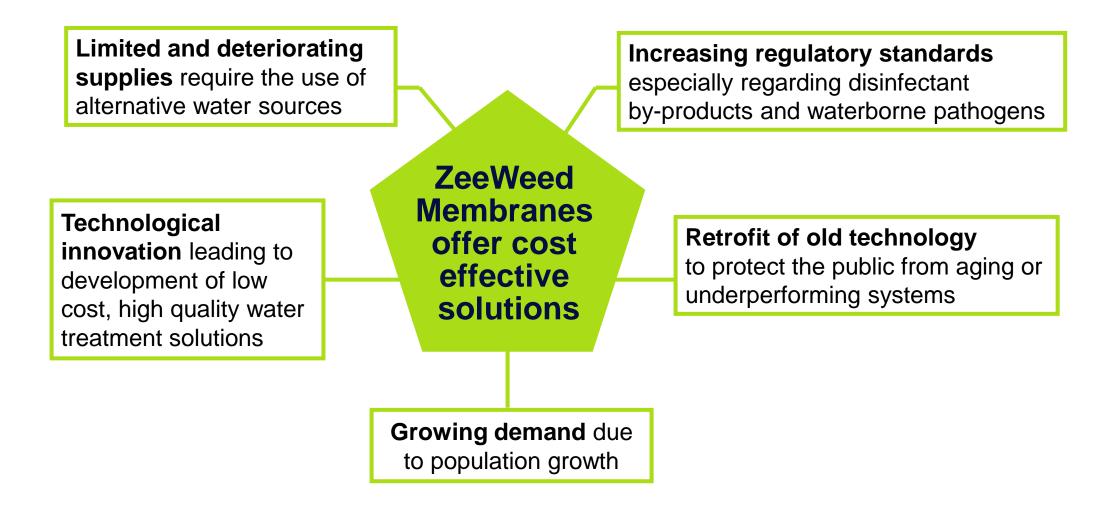
- SUEZ's membrane offer consists on 4 complementary areas of activity :
 - Customised design & build.
 - Operation and services solutions.
 - "Packaged" equipment and technologies.
 - Financing throught BOT contracts (from the design phase up to the Plant transfer)


- SUEZ has consolidated its world-leading position in the field, in particular thanks to:
 - Expertise as builder and operator, offering local authorities and industry competitive solutions adapted to their particular requirements
 - Mastery of pre-treatment, membrane treatment, membrane bioreactors and remineralization processes.
 - Comprehensive range of modular & standardized products to optimize design, delivery & commissioning times
 - Operating support tools to safeguard freshwater or reuse-wastewater production and continuously
 optimize operating costs
 - Introduction of effective energy recovery systems to reduce energy consumption
 - Solutions to preserve the Earth's flora and fauna in general, water sources and marine life (water intake and dispersion of brines).

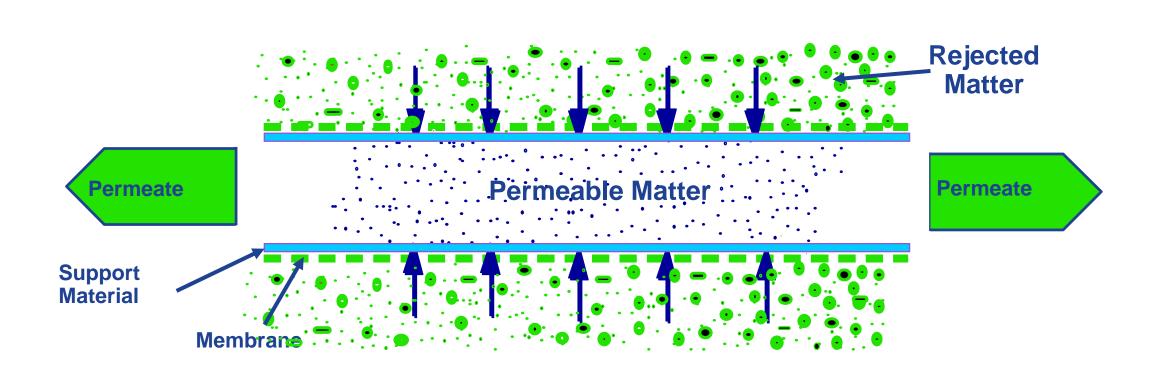
2. MEMBRANE SYSTEMS

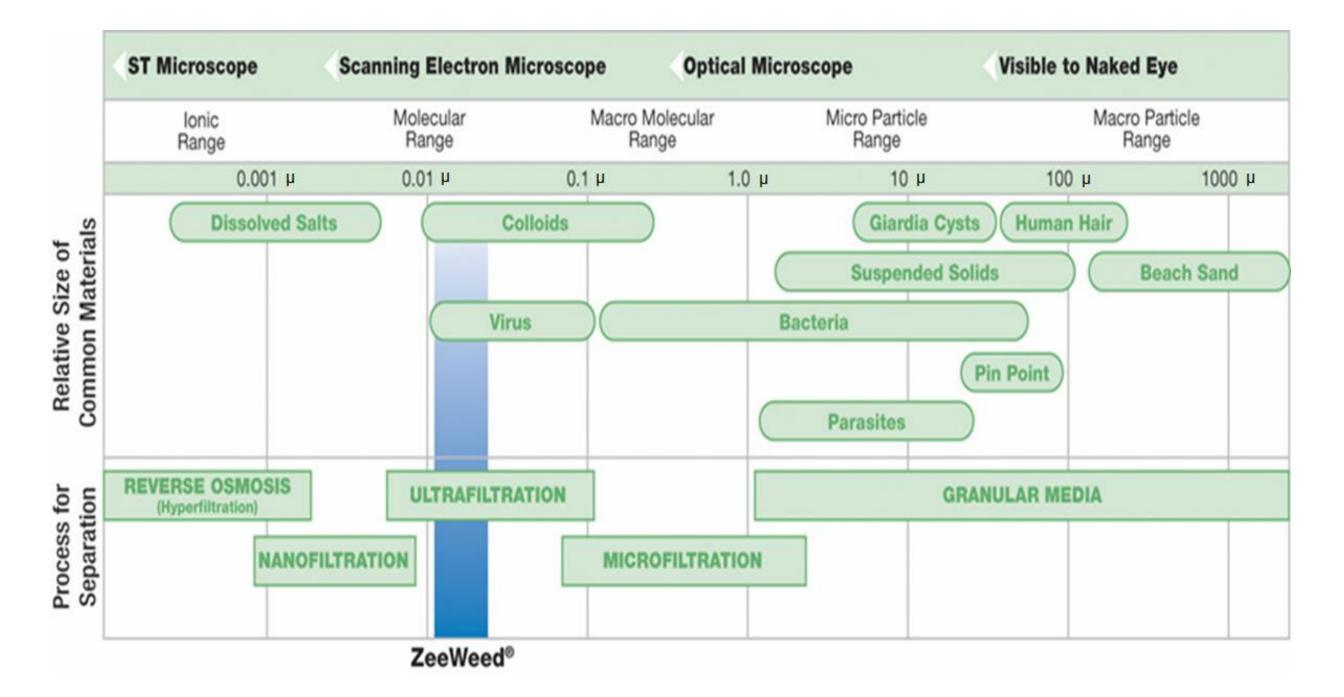


MEMBRANE DRINKING WATER SYSTEMS


MEMBRANE WASTEWATER REUSE SYSTEMS

3. ULTRAFILTRATION (WTP & WWTP)


UF- Protecting Public Health with ZeeWeed Membranes

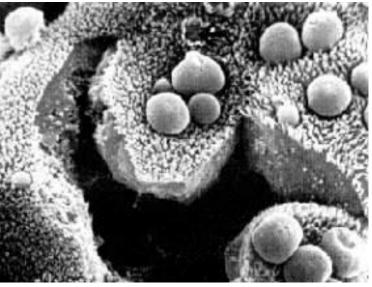

What is a membrane?

Membranes are engineered thin barriers or films of material that allow certain substances to pass by a size exclusion mechanism related to the size of the pores on the membrane surface

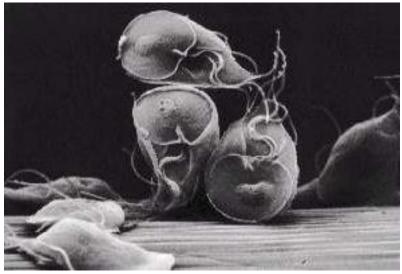
What is a membrane?

Membrane Technology Provides the Ultimate Level of Security

Positive barrier - Parasites are <u>removed</u> by size exclusion (>0.1 μ m), not inactivation


Superior treated water quality California Department of Health Services Testing **O**> 9 log removal of *Giardia*

O > 9 log removal of *Cryptosporidium*


 \mathbf{O} > 2 / 3.5 log removal of *MS2* virus

Reliable, non-chemical treatment

Cost effective for small, medium and large communities

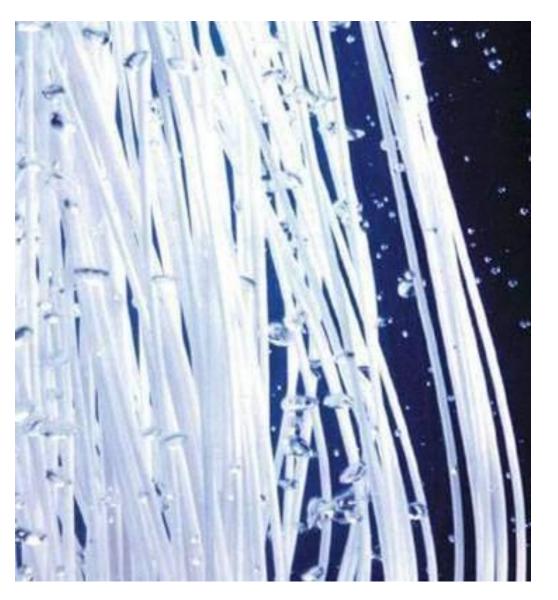
Cryptosporidium Parvum (4-7 µm)

Giardia Lamblia (6-16 µm)

ZeeWeed is the Trusted Membrane Platform

Introduced in 1993

Immersed hollow fiber membrane configuration


Outside-in mode of operation

PVDF chemistry that is resistant to chlorine, oxidants and wide pH range

Compatible with coagulants/PAC

NSF 61 Certified ultrafilter

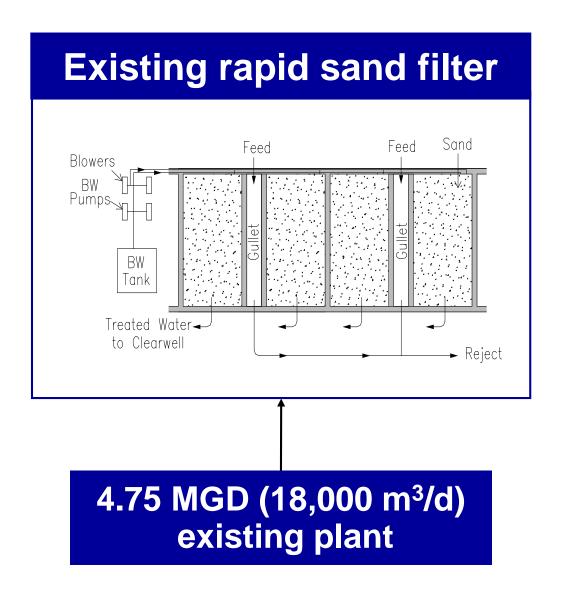
Over 1.8 BGD* of treatment capacity makes ZeeWeed the world's most trusted and experienced immersed membrane platform!

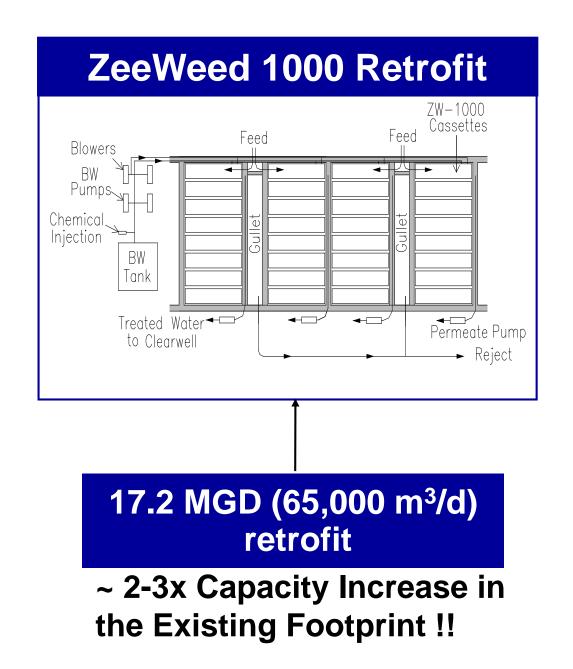
* Installed or under design as of December, 2006

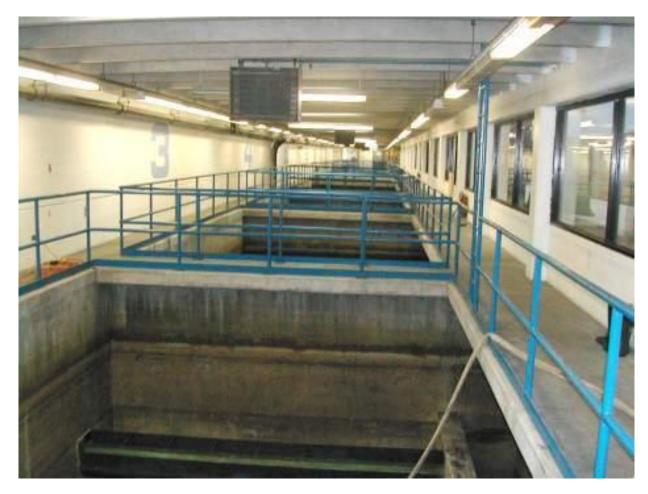
Smaller Footprint

UF is uniquely suited for spatially constrained facility sites

High tank intensity Smaller flocculation zones Elimination of clarification Minimization of treatment chemicals


Minimization or elimination of treatment processes reduces cost




Simple, Cost Effective Media Filter Retrofits

Simple, Cost Effective Media Filter Retrofits Columbine WTP, Denver, CO

28 MGD (106 MLD) Before

50 MGD (189 MLD) After

ULTRAFILTRATION TECHNOLOGY HELPS SUPPLY CLEAN DRINKING WATER IN NORTHERN PORTUGAL

The facility, based north of the city of Oporto, has a new capacity of 24 million liters per day as a result of the upgrade, providing <u>clean drinking water</u> to roughly 80,000 people in the Guimarães and Vizela regions.

The Santa Eufemia plant treats water from the nearby Ave River and is operated by Vimágua, the municipal authority for water management in the region. Plant upgrade work was required as a result of deteriorating water quality from the river. The plant is now one of the largest installations of SUEZ ZeeWeed 1500 modules in Europe and the Middle East.

Water Technologies & Solutions fact sheet

ZeeWeed* pressurized ultrafiltration

model ZW1500

description and use

As a pioneer of membrane technology, SUEZ leverages decades of research, development, and operational experience in developing the most advanced pressurized ultrafiltration technology in the market, ZeeWeed 1500. ZeeWeed systems are proven to consistently outperform conventional filtration technology while meeting or exceeding regulatory requirements, regardless of source water quality.

typical applications

Versatile and reliable, the pressurized ZeeWeed 1500 is ideally suited for use in numerous applications including drinking water treatment, tertiary filtration and RO pre-treatment for brackish water and seawater. Compared to granular filter media, ZeeWeed membranes produce superior water quality and are virtually unaffected by variable raw water quality - all at a cost comparable to conventional filtration technology.

General Properties

- 0.02 µm nominal pore diameter for optimal removal of particulates, bacteria and viruses
- PVDF hollow fiber membrane provides high mechanical strength and chemical resistance
- Outside-in filtration provides uniform flow distribution and high solids tolerance

Modules may be stored in the original factory pack-

aging for up to 1 year prior to installation. Modules

must be stored between 5°C and 35°C [41°F to

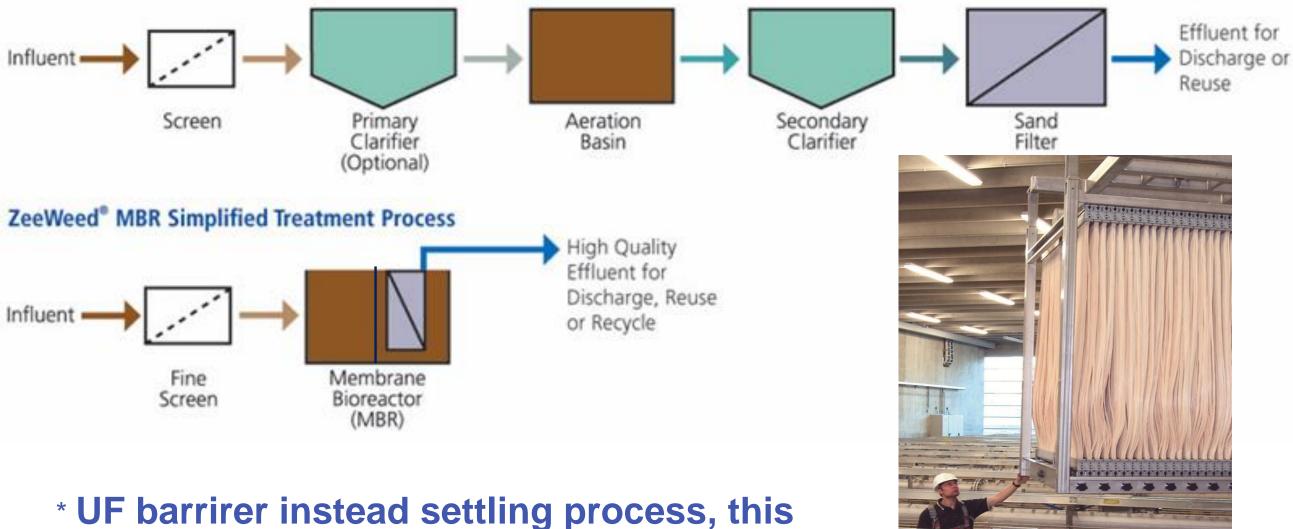
95°F). Do not expose the membrane module to di-

Storage and Handling

rect sunlight (UV light).

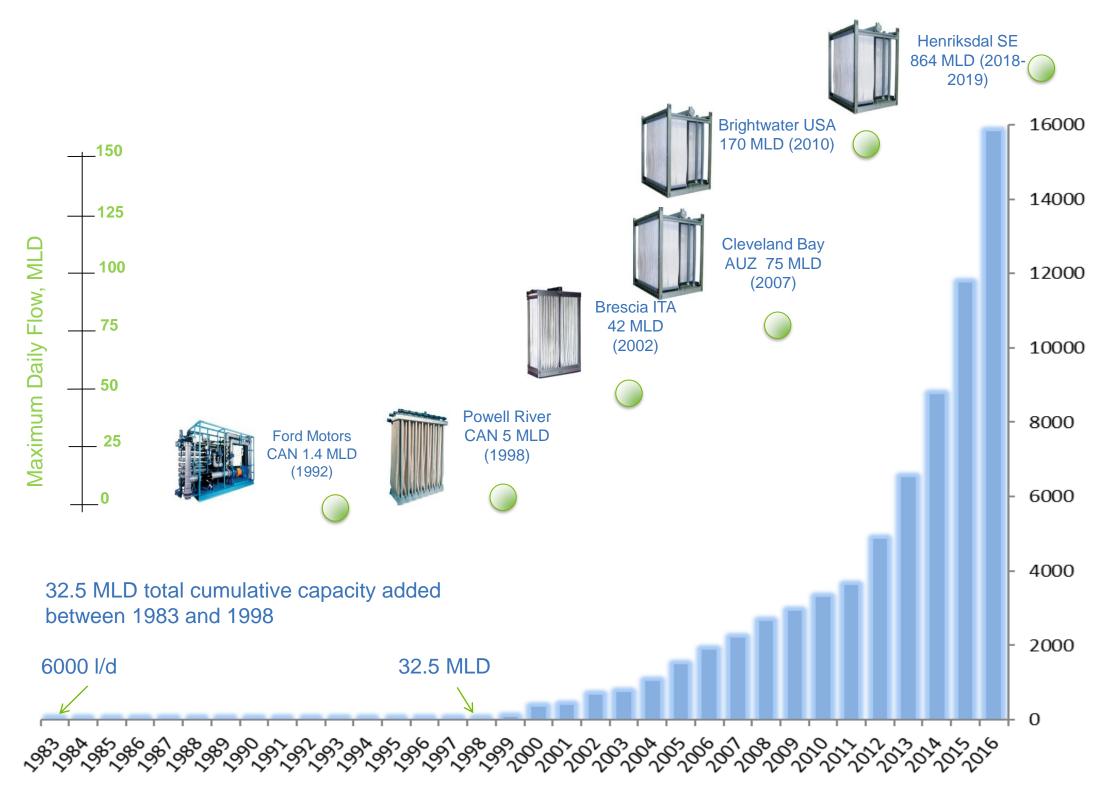
Largest DW Installations use ZeeWeed

Twin Oaks, CA, USA		100 mgd
Lakeview, ON, Canada	95 mgd	
Fridley, MN, USA – P	_	90 mgd
Moscow, Russia - A		73 mgd
Chestnut Avenue, Singapore		72 mgd
Columbia Hts, MN, USA - N		70 mgd
Racine, WI, USA		50 mgd
Thornton, CO, USA		50 mgd
CCK, Singapore		48 mgd
Clay Lane, UK - N		42.8 mgd
Kamloops, BC, Canada	42.3 mgd	
Forest Park, PA, USA – USF		40 mgd
Roetgen, Germany - N	38 mgd	
Escombreras, Spain		37 mgd
San Joaquin, CA, USA	36 mgd	
Modesto, CA – USF		36 mgd
Olivenhain, CA, USA		34 mgd
Coliban, Bendigo, AU – USF		33 mgd
Sweetwater, CA		30 mgd
Scottsdale, AZ		30 mgd
Thunder Bay Bare Point	30 mgd	



4. MBR (WWTP)

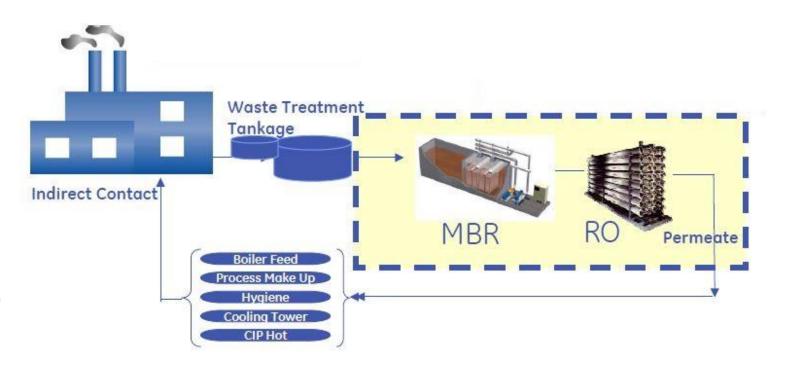
MBR. Membrane Biological Reactor

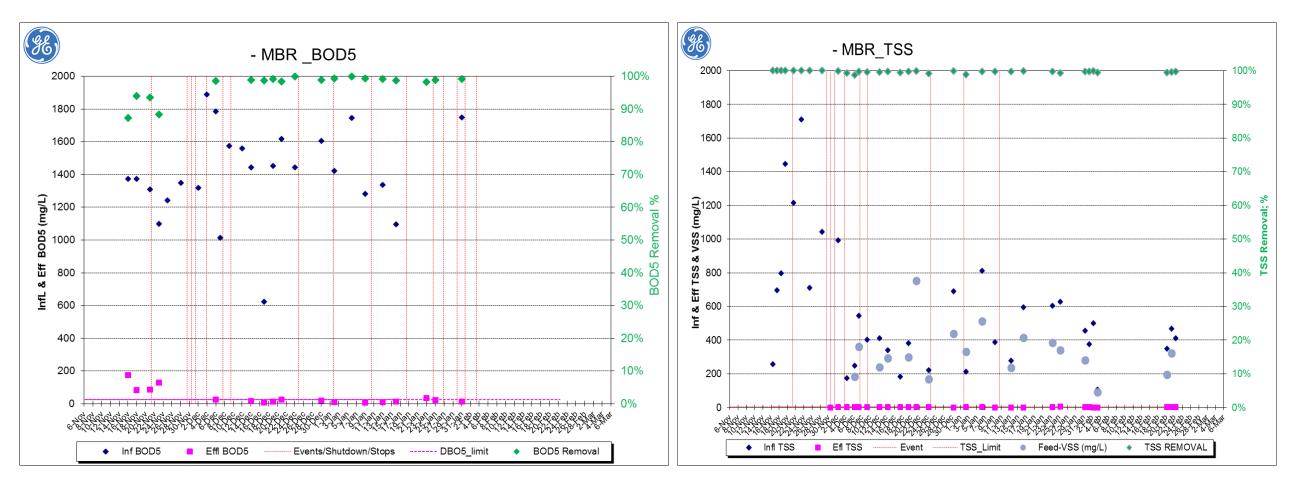

Conventional Multi-Step Tertiary Treatment Process

guarantee output quality water.

MBR Installations

Benefetis


- Allways 100% quality. Physical barrier. BAT/MTD in current BREF
- It does not affect by "bulking" phenomena, filamentous, etc..
- Increase WWTP capacity in small area
- Remove settler that can be used for other process
- Perfect biological process control, solids can not go out.
- Modulas and flexible design. Revamping projects.



Reuse

- Cooling towers
- Process
- Boilers feed
- Feed a RO,EDR, IX...

press release

Moscow, January 24, 2018

Bashneft and SUEZ Put into Operation a Complex of Biological Treatment Facilities with the World's Largest Industrial Membrane Bioreactor and Electrodialysis Reversal Units

- Bashneft-Ufaneftekhim Biological Treatment Plant Will Treat up to 84 Million Liters of Wastewater per Day Using SUEZ Industrial Wastewater Treatment Technology
- Equipment Being Serviced and Maintained by SUEZ as Part of a 15-Year Agreement
- SUEZ Remote Monitoring and Diagnostic Solutions Will Help Maximize Performance and
 Lower Operating Costs

Today, Bashneft-Ufaneftekhim refinery, a Rosneft-affiliated company, inaugurated its biological treatment plant, Bashneft key nature protection facility, which secured its spot as the world's largest industrial facility using membrane bioreactor (MBR) and electrodialysis reversal (EDR) technologies. The facilities, located in the Russian city of Ufa, will treat up to 84 million liters of wastewater per day, which makes them unprecedented for industrial wastewater treatment, employing the most advanced technologies and enabling water reuse.

SUEZ supplied its ZeeWeed* MBR membranes, EDR and reverse osmosis (RO) equipment to the Bashneft-Ufaneftekhim biological treatment plant and will provide services as part of a 15-year long-term service contract to ensure reliable operation of equipment and an uninterrupted guaranteed replacement of membranes.

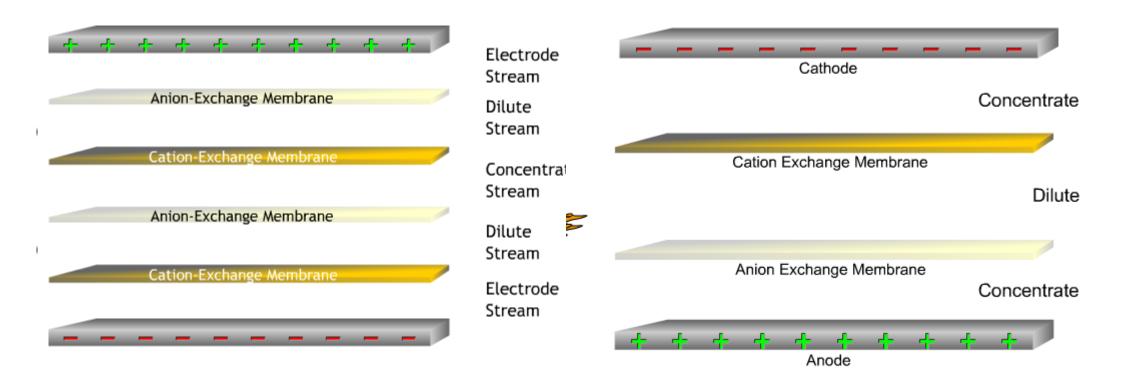
LARGEST MBR Europe

Installations	Location	Technology Provider	(Expected) date of commissioning	PDF (MLD)	ADF (MLD)
Henriksdal, Sweden	nr Stockholm, Sweden	SUEZ	Stage 1: mid 2019 Stage 2: 2021 Stage 3: 2023 Stage 4: 2026	864	536
Seine Aval	Acheres, France	SUEZ	2016	357	224
Brussels Sud	Brussels, Belgium	SUEZ	2017	190	86
Carré de Reunion	Versailles region, France	Koch Membrane Systems	2015	144	42
Assago	Milan, Italy	SUEZ	2016	125	55
Aquaviva	Cannes, France	SUEZ	2013	108	60
La Moree	France	SUEZ	2013		61
Sabadell	Spain	Kubota	2009	55	
San Pedro del Pinatar	Spain	SUEZ	2007	48	
Porta Maghera	Italy	SUEZ	2005	47	
Nordkanal	Kaarst, Germany	SUEZ	2004	45	
Brescia	Italy	SUEZ	2002		43
Gava	Spain	SUEZ	2010		33

PDF: Peak daily flow

ADF: Average daily flow, Megalitres per day

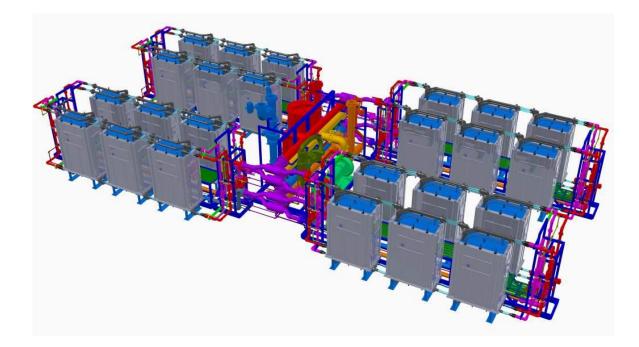
SUEZ: SUEZ Water Technologies & Solutions (formerly GE Water & Process Technologies)



5. ELECTRODIALYSIS REVERSAL (WTP & WWTP)

EDR is the most robust and highest recovery wastewater desalination technology.

- 10+ year membrane life
- High turbidities
- Chlorine tolerance
- Silica tolerance, high recovery > 90%


Typical Applications

Drinking Water

Reduction of total dissolved solids Removal of **nitrate**, fluoride, arsenic, perchlorate, radium, Uranium, Selenium High silica feed water applications

Municipal Wastewater for Irrigation

Reduction of TDS Alleviates fresh water use TOC Tolerance

Industrial Process Water

- Reduce TDS prior to ion exchange
- Recovery of RO reject
- High silica loading (up to 140 ppm)

Exploration Produced Water

Concentration of salt, reduce disposal volume

Wastewater

Removes salts from wastewater

1. Effective on all charged constituents:

Sodium, Nitrate, Small TOC

2. Advantages of EDR:

Higher turbidity/solids allowance Reduction in required pretreatment Can manually clean membranes Maintain Chlorine residual to prevent biogrowth

Removes salt to drinking water limits

1. Effective on all charged constituents:

Arsenic, Radium, Perchlorate, Fluoride, Nitrate

2. Advantages of EDR:

Multiple well sources with varying quality

Inconsistent demand, start/stops

High recovery

Reduced operating costs (chemicals, labor)

typical operating parameters

Water Recovery	Up to 94%
Salt Removal	50 to 95%
Silica Removal	none
Temperature	40 to 100°F (4 to 38°C)
Input Voltage	

feed water guidelines

Typical Feed TDS	. 100 to 3,000 ppm (mg/l)
Maximum Feed TDS	6,000 ppm (mg/l)
Silica (Reactive)	unlimited
рН	
Turbidity	5 NTU
Free Chlorine (continuous)	0.5 ppm (mg/l)
T0C	< 60 ppm (mg/l)
COD	< 200 ppm (mg/l) as 02
Iron	< 0.3 ppm (mg/l)
Manganese, Aluminum	< 0.1 ppm (mg/l)
H2S	< 0.1 ppm (mg/l)

Allowable Intermittent Levels:

Turbidity	10 NTU
Free Chlorine	30 mg/l

ESTIMATED OPERATION COST

Company User WAT

User	R Lewis					Blended			
WATSYS Run Date	Thursday, June 25, 20	15				Product	Conc. BD	Waste	EDR Product
WATSTS Kull Dute	mursuuy, June 25, 20	15	Calcium	mg/l	90,0	49,6		874,9	17,09
Number of Lines	2		Magnesium	mg/l	29,0	16,4	273,2	273,2	6,31
EDR System	2020-2L-2S with 2 Lin	e(s) 2 Stage(s)	Sodium	mg/l	116,9	70,4	1019,5	1019,5	33,01
Anion Membrane	AR204	0(0) 2 0 0 0 9 0 (0)	Potassium	mg/l	0,0	0,0	0,0	0,0	
Cation Membrane	CR67		Strontium	mg/l	0,0	0,0	-	0,0	-
Spacer	Mark IV-2		Barium	mg/l	0,0	0,0	0,0	0,0	0,00
			Ammonia	mg/l	0,0	0,0	0,0	0,0	
Blended Product	130 m3/hr		Bicarbonate	mg/l	253,0	156,7	2106,2	2106,2	79,01
EDR Product	72,0 m3/hr		Sulphate	mg/l	69,4	37,3	694,0	694,0	11,38
Dilute In	74,4 m3/hr		Chloride	mg/l	176,5	98,1	1711,5	1703,8	34,90
Dilute Flow Losses	0,9 m3/hr		Fluoride	mg/l	0,2	0,1	1,4	1,4	0,04
Dilute Out	73,5 m3/hr		Nitrate	mg/l	85,6	48,3	811,1	811,1	18,20
Off-Spec Product	1,5 m3/hr	2% OSP	Total PO4	mg/l	0,0	0,0	0,0	0,0	0,00
Feed Pump	78,7 m3/hr		HPO4	mg/l	0,0	0,0	0,0	0,0	0,00
Concentrate Pump	67,0 m3/hr		H2PO4	mg/l	0,0	0,0	0,0	0,0	0,00
Electrode Waste	0,6 m3/hr		Silica	mgl	0,0	0,0	0,0	0,0	0,00
Concentrate Makeup Flow	3,7 m3/hr		CO2	mgl	13,09	13,09	36,02	36,02	13,09
Net System Feed into EDR	78,7 m3/hr		Carbonate	mgl	0,35	0,13	8,73	8,73	0,03
Total System Waste	6,7 m3/hr	8% Waste w/o Bypass	Total Hardness	CaCO3	343,8	191,4	3306,4	3306,4	68,58
		5% Waste w/ Bypass	TDS	mg/l	820,9	477,1	7500,5	7492,8	199,98
Concentrate Blowdown	6,7 m3/hr		Conductivity	uS/cm	1222,3	733,6		9073,8	317,86
System Feed w/ Bypass	136,7 m3/hr		рН		7,54	7,33	8,02	8,02	7,03
Bypass Feed to Product	58,0 m3/hr		WATSYS % Saturation						
Minimum Velocity	11,49 cm/s		CaSO4		4,0	2,1	40,5	40,5	0,60
First Stage Inlet Pressure	3,06 bar		BaSO4		0,0	0,0	0,0	0,0	
Last Stage Outlet Pressure	0,69 bar		SrSO4		0,0	0,0	0,0	0,0	0,00
			CaF2		15,9	0,0	143,9	143,9	0,00
Temperature	18 C		CaHPO4		0,0	0,0	0,0	0,0	-
Pumping Power	0,41 kWh/m3		Ca3(PO4)2		0,0	0,0	0,0	0,0	0,00
DC Power	0,25 kWh/m3								
Total Power	0,66 kWh/m3		Langelier Index (LI)		0,16	-0,49	2,50		
Total DC KVA	21,05 KVA		Stiff-Davis Index (SDI)		-0,04	-0,70	2,12	2,12	
Feed Pump Power	24,41 hp		SAR	- 11	2,74	2,21	7,70	7,70	
Concentrate Pump Power	15,06 hp		Flow Rate	m3/hr	78,7	130,0	6,7	6,7	72,0

ESTIMATED OPERATION COST

Feed:MBR PERMEATE

WATSYS Run Date					Raw Feed	<u>Product</u>	<u>Conc. BD</u>	<u>Waste</u>
			Calcium	mg/l	38,8	3,	1 310,8	241,4
Number of Lines	6		Magnesium	mg/l	39,8	3,	7 314,8	244,6
EDR System	2020-6L-3S with 6 Line(s) 3 Stage(s)	Sodium	mg/l	510,9) 69 <i>,</i>	4 3874,0	3012,9
Anion Membrane	AR204		Potassium	mg/l	38,6	5 3,	9 302,4	235,0
Cation Membrane	CR67		Strontium	mg/l	0,0) 0,	0 0,0	0,0
Spacer	Mark IV-2		Barium	mg/l	0,0) 0,	0 0,0	0,0
			Ammonia	mg/l	0,0) 0,	0 0,0	0,0
			Bicarbonate	mg/l	336,0) 79,	7 2294,2	1788,3
EDR Product	4000,0 m3/day		Sulphate	mg/l	154,3	3 11,	9 1237,2	961,1
Dilute In	4296,4 m3/day		Chloride	mg/l	665,8	3	9 5215,7	4053,7
Dilute Flow Losses	129,8 m3/day		Fluoride	mg/l	0,0) 0,	0 0,0	0,0
Dilute Out	4166,7 m3/day		Nitrate	mg/l	56,8	3 6 <i>,</i>	2 441,5	343,1
Off-Spec Product	166,7 m3/day	4% OSP	Total PO4	mg/l	0,0) 0,	0 0,0	0,0
Feed Pump	4705,9 m3/day		HPO4	mg/l	0,0) 0,	0 0,0	0,0
Concentrate Pump	3866,8 m3/day		H2PO4	mg/l	0,0) 0,	0 0,0	0,0
Electrode Waste	37,6 m3/day		Silica	mgl	20,0) 20,	0 20,0	20,0
Concentrate Makeup Flow	371,8 m3/day		CO2	mgl	12,68	3 12,6	8 21,87	24,21
Net System Feed into EDR	4705 <i>,</i> 9m3/day		Carbonate	mgl	0,62	2 0,0	3 16,70	9,17
Total System Waste	· · · ·	15% Waste w/o Bypass	Total Hardness	CaCO3	260,4	l 22,	6 2069,6	1608
Concentrate Blowdown	501,6 m3/day		TDS	mg/l	1861,5	5 265 <i>,</i>	8 14027,1	10909,2
System Feed w/ Bypass	4705 <i>,</i> 9m3/day		Conductivity	uS/cm	2993,9	9 420,	3 19407,5	15455,7
Bypass Feed to Product	0,0m3/day		рН		7,70) 7,0	8 8,30	8,15
Minimum Velocity	9,07 cm/s		WATSYS % Saturation					
First Stage Inlet Pressure	2,81bar		CaSO4		2,6	5 O,	2 21,5	16,7
Last Stage Outlet Pressure	0,69 bar		BaSO4		0,0) 0,	0 0,0	0,0
			SrSO4		0,0		0 0,0	0,0
Temperature	15C		CaF2		0,0			
Pumping Power	0,4kWh/m3		CaHPO4		0,0) 0,		
DC Power	0,67kWh/m3		Ca3(PO4)2		0,0) 0,	0 0,0	0,0
Total Power	1,07 kWh/m3							
Total DC KVA	136,46 KVA		Langelier Index (LI)		-0,01	-2,2	7 2,29	1,92
Feed Pump Power	53,42 hp		Stiff-Davis Index (SDI)		-0,21			
Concentrate Pump Power	35,55 hp		SAR		13,76			
			Flow Rate	m3/day	4705,9	9 4000,	0 501,6	705,9

aguas de valencia chooses SUEZ's EDR technology for the gandia water system

Figure 1: Falconera Water Treatment Plant

challenge

Gandia is a city that is 60 km (37.3 miles) south of Valencia along the coast in southern Spain. The city has around 80,000 people during the winter and the population swells to 250,000 during the summer with tourists and vacationers from Madrid who own in Gandia.

The nitrate levels for the wells that feed the city were too high to meet new regulations (<50 ppm) that were coming in to effect, so the city started to explore possible solutions. They tested different technologies and ultimately settled on Electrodialysis Reversal (EDR) from SUEZ. EDR technology reduces the nitrate levels while operating at high water efficiency at a good longterm operating cost. The goal for this system was to supply water with less than 25 ppm of nitrate.

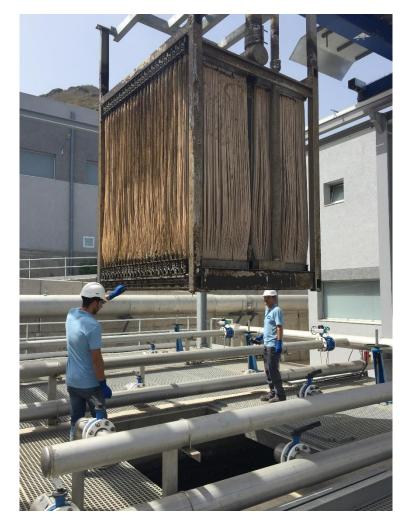
The high recovery from SUEZ EDR systems was key to avoid the construction of new wells.

solution

Aguas de Valencia, the Concessionaire of Gandia Water Distribution System, and the City Council of Gandia have carried out the construction of these facilities, that they also operate, They worked together with SUEZ to design and install two EDR plants that are identical but located about 5 km (3.1 miles) apart from each other.

The solution provided through Aguas de Valencia and SUEZ moved swiftly. The buildings were constructed in six months and the system was up and operating 1-2 months later. The first site is Ull de Bou and the second site is Falconera.

results


Each site has four (4) trains of EDR systems operating (40 stacks/site) and produces 16,000 m³/day (1468 gpm) of drinking water and operates at 90% recovery.

🧑 suez

Figure 2: Installed EDR Systems

MBR + EDR (irrigation reuse) . Valleguerra Plant Canary Islands)

MBR : 30.000 m3/d

EDR: 4000 m3/d to irrigation

MBR + EDR (irrigation reuse) . Valleguerra Plant - Canary Islands

https://www.youtube.com/watch?v=IGIgUH0GB6w

6. REVERSE OSMOSIS (Sea Water Desalination)

Reverse Osmosis Desalination in Suez

- Nearly 50 years of experience (first reference in 1969 in Houat Island, France):
 - SUEZ has successfully developed and integrated complementary technologies to make this a sustainable solution
 - SUEZ has built more than 255 desalination plants all over the world

 SUEZ Treatment Infrastructures has two Production Centers acting as "Excellence Centers" for the Desalination Market with plenty of experts on this field. These PCs are based in France (Rueil) & Spain (Bilbao)

1.5 million cubic meters of desalinated water produced by a plant operated by SUEZ

J_J million cubic metres of desalinated water produced per day by a degremont[®] plant **10** million people supplied a pioneer in desalination by reverse osmosis,

SUEZ has built 255 degremont® plants in all four corners of the world

Global Water Awards* recognition from our peers

2007

Desalination plant of the year Perth (Kwinana), Australia Desalination plant of the year (highly commended) Wadi Zarga Ma'in, Jordan

2010

Desalination company of the year Desalination plant of the year

Barcelone-Llobregat, Spain Desalination project of the year Victorian desalination plant, Melbourne, Australia Energy and Water, plant of the year Barka II, Oman

2012

Water company of the year (distinction) Desalination plant of the year (highly commended) Al Dur, Bahrain

2014

Desalination Deal of the year

Victorian Desalination Project refinancing, Australia

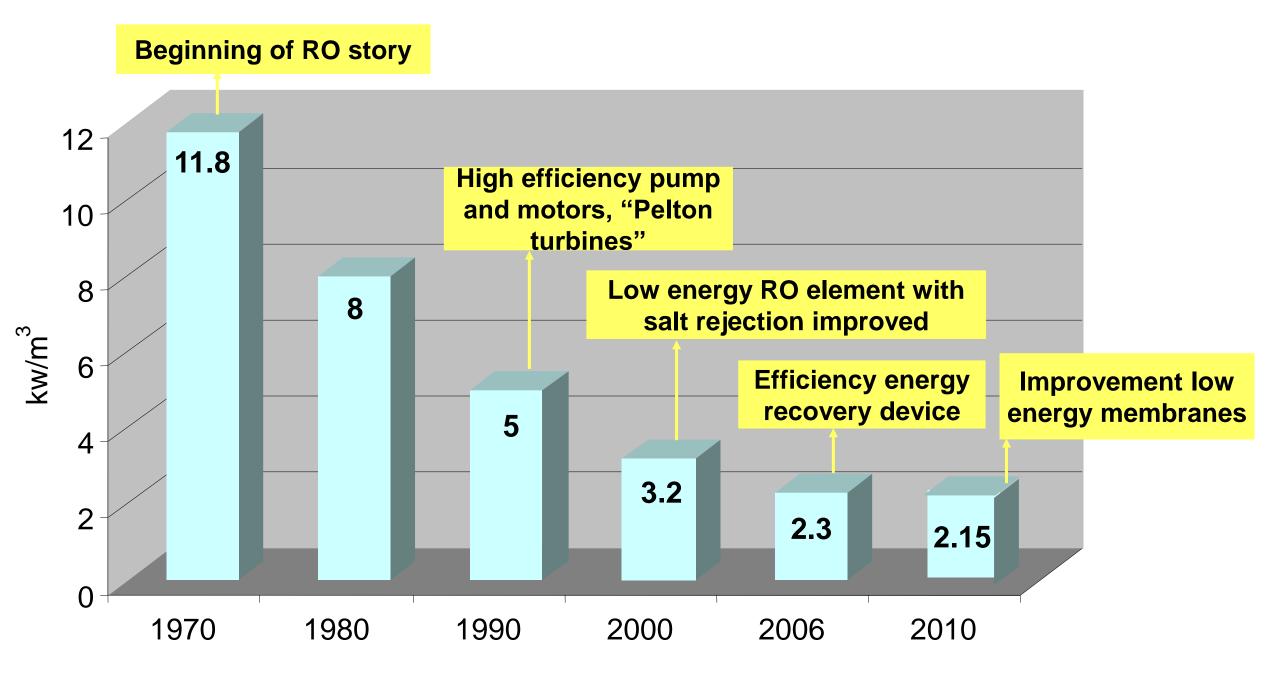
Water Project of the year

Riyadh water supply enhancement programme, Saudi Arabia

2013

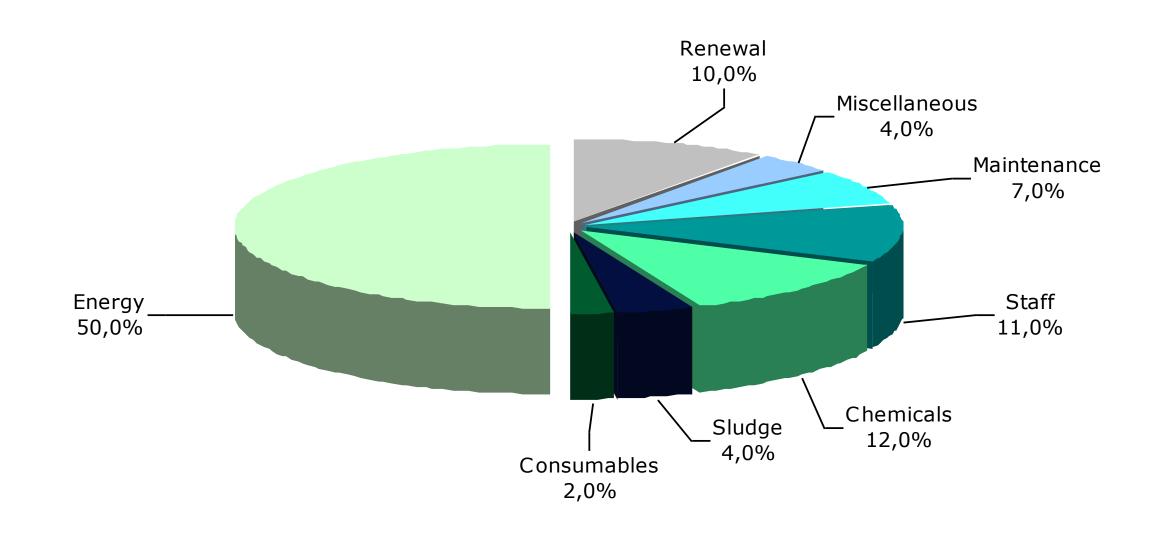
Desalination company of the year (distinction) Desalination plant of the year

Victorian desalination plant, Melbourne, Australia


2015

Desalination company of the year (distinction)

* Organised by the journal Global Water Intelligence


Reverse Osmosis Desalination: Power consumption improvement

Evolution of electrical consumption for sea water first pass RO

Reverse Osmosis Desalination – OPEX %s

 OPEX is impacted up to 50 % due to energy consumption (energy recovery device included)

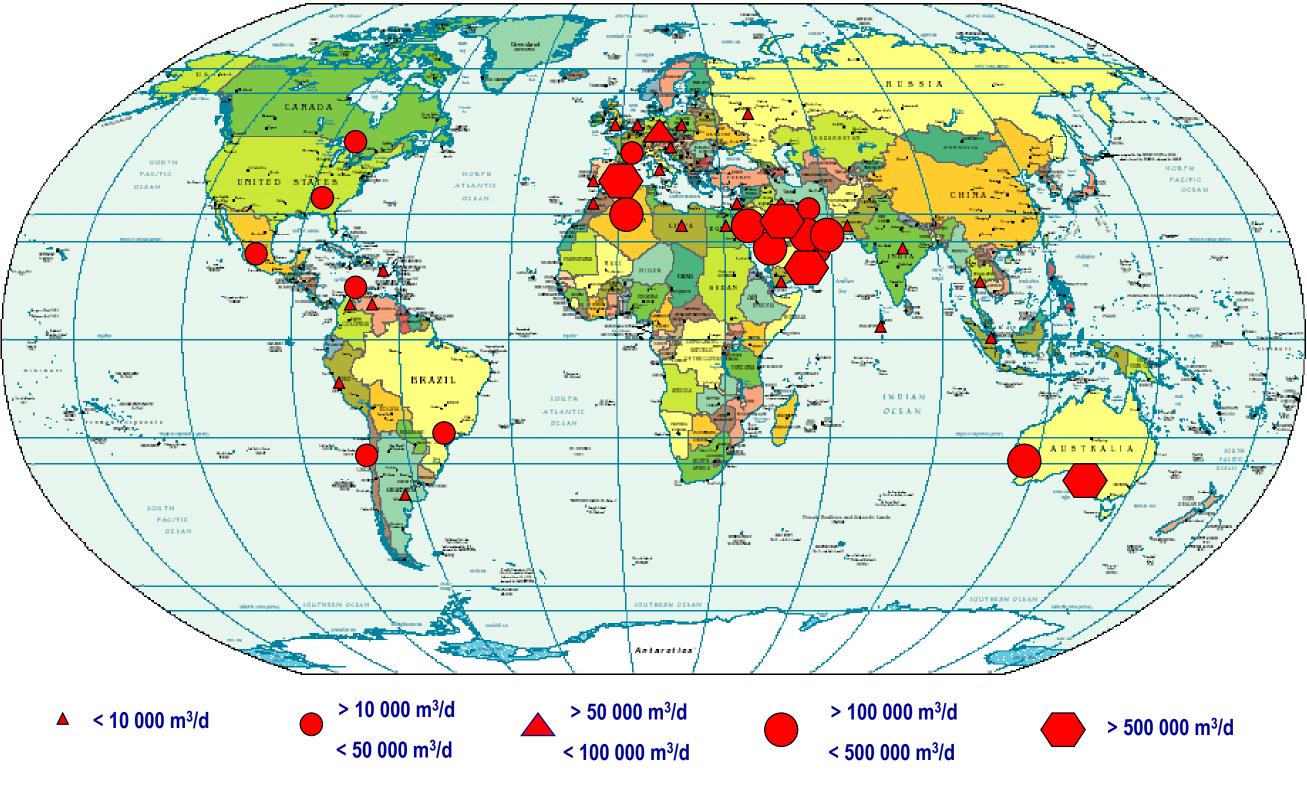
Reverse Osmosis Desalination: Capex & Opex

CAPEX

Total = 1.000 – 1.200 € / m³/d

• OPEX

Electrical consumption:


- First pass = 2 2,3 kWh / m³
- Total = $3 4 \text{ kWh} / \text{m}^3$

Total operational costs:

Sea Water RO Desalination Plants: 0,45 – 0,5 € / m³

Reverse Osmosis Desalination: Main References

42

Reverse Osmosis Desalination: Main References

Year	Plant	Country		Flow m3/day		Water Use
1999 -	Bahía de Palma	Spain	-	68 000 MCD	_	Potable, Tourism
2002 -	Carboneras	Spain	-	120 000 MCD	-	Potable, Agriculture
2003 -	Fujairah	UAE	_	170 500 MCD	-	Potable, Agriculture
2004 -	Curaçao	Ned. Ant.	_	18 500 MCD	-	Potable, B< 0.3
2004 -	Minera Escondida,	Chile	_	45 000 MCD	-	Industry, Mining
2006 -	Perth	Australia	_	143 700 MCD	_	Potable
2008 -	Barka	Oman	_	120 000 MCD	-	Potable, Industry
2009 -	Barcelona	Spain	_	200 000 MCD	-	Potable
2011 -	Al Dur	Bahrain	_	218 000 MCD	-	Potable, Industry
2012 -	Melbourne	Australia	_	450 000 MCD	_	Potable
2014 -	Mirfa (under construction)	UAE	-	130 000 MCD	_	Potable
2016 -	Barka (under construction)	Oman	_	281 000 MCD	-	Potable
2016 -	Rosarito (awarded)	Mexico	_	190 000 MCD	-	Potable

Melbourne / Australia

Treatment lines

Sea water intake and discharge tunnels and structures up to 1.5 km out to sea.

Water line

Pretreatment:

- Chemical dosing system
- Dual media pressure filters (3 x 24)
- Cartridge filters (3 x 14)
- Reverse osmosis: double pass system:
 - 1st pass 27 (9 x 3) trains (20,850 m³/d each) recovery 48%
 - 2nd pass: 24 (3 x 8) trains (18,800 m³/d each) recovery 90%
 - Energy recovery by pressure exchanger

Post-treatment:

- PH adjustments by CO2 and remineralization
- Fluoridation and disinfection

The project includes two undersea tunnels (total 2.7 km); 84 km of treated water pipeline (comprising 7,000 pipes); 87 km of 220kV underground connection; 29 buildings; 51 RO trains, 55,000 membranes; 72 dual media filtration pumps; and 486 ERI PX 260 energy recovery systems.

- The most technically advanced, environmentally friendly and energy efficient desalination facility.

- Minimal energy use is achieved through systems that minimize power consumption, with all energy usage 100% offset by green electricity from two wind farms and a significant green roof featuring 40,000 plants.
- The plant is totally integrated into its surrounding and preserves the natural environment. The plant is almost
 invisible from any public viewing point.
- The project also overcame the human resources challenge, operating with a peak of 4,200 workers from 20
 nationalities on the site each day.

Desalination Capacity 450,000 m³/d

Key dates D&B completion: Dec. 2012 O&M period: 2012 – 2039

The Victorian Desalination plant is able to provide a source of drinking water independent of rainfall for Melbourne and some regional communities.

Client

datas

(ey

AquaSure (PPP: Public Private Partnership) and the Victorian Government

Project main contractor

D&B: JV SUEZ (35%) / Thiess (65%) O&M: JV SUEZ (60%) / Thiess Services (40%)

Type of contract

Design & Build, Operation & Transfer (BOT)

One of the biggest reverse osmosis plant in the world

Barcelona / Spain

Treatment lines

Water line

Seawater intake

- Offshore open intake located 2,2 km from the coast with the water inlet 25 m below the surface.
- Pumping station located 3.5 km away from the SWRO plant (6 pumps for 21,000 m³/h total flow of seawater).

- Complete pretreatment

- Screening
- Seawater clarification through rapid flotation(10 Seadaf)
- 2 stages of dual media open filters (20 Mediazur GH)
- Pressurized multi-media filtration (20 Seaclean)
- 18 cartridge filters with 360 cartridges of 5 microns each
- Chemical dosing system
- Reverse osmosis (double-pass systems)
 - 1st pass: 10 trains (recovery rate of 45%)
 - 2nd pass : 2 trains (recovery rate of 85%)
 - Energy recovery device: pressure exchangers allow to save 50% in energy consumption for reverse osmosis
- Post-treatment: Remineralization lime filters; Neutralization with CO₂; Disinfection with hypochlorite
- Treated water storage tank and pumping station

Sludge line:

Sludge storage tank; Clarification and thickening (2 Densadeg); Sludge dewatering (centrifuge) and storage

Brine innovative treatment: blended with treated water from the Wastewater Treatment Plant of Baix Llobregat in a ratio lower than 1:1 and discharge thought diffusers at 50 depth over 3 km from the intake.

Green label: adding a wind generator and photovoltaic panels in all building and reservoir roofs allowing to produce 1.3 MW and to minimize the electric internal consumption, saving more than 850 CO_2 Ton/year.

Desalination

Capacity 200,000 m³/d

Key dates Completed in July2009 O&M period 2009-2012

A pilot plant was operating for two years to help in design and for getting experience with Mediterranean seawater

	Densadeg	
	Mediazur	
SSS	Seaclean	
ĕ	Seadaf	
ă	Reverse	
Z	Osmosis	
- 1		

10

Client

ATLL (Aguas Ter LLobregat), private company with public shareholders

Contract type

Design, Build & Operate (including 2-year O&M)

Contractor

JV SUEZ (Degrémont (25%) & Abgar (65%)) / Drace (10%)

The Barcelona-Llobregat Plant is the largest in Europe and was awarded the prize of the Desalination plant of the year in the Global Awards 2010

OBRIGADO!

ready for the resource revolution

