SFC Umwelttechnik

clean water for the world

AQUASMART - Water and Wastewater Treatment Solutions

A Reconversão de ETAR existentes em Unidades Geradoras de Recursos *The Conversion of existing WWTPs to Resource Generating Units* Luís Marinheiro

> DI(FH) Dr. Simon Jabornig 7th February 2018

CONTENT

1. Technologies C-MEM, C-TECH and C-ION

- Case Study 1: Reconstruction of industrial WWTP of Bimbo-Tijuana – Reuse of treated water for washing and irrigation
- 3. Case Study 2: Reconstruction of industrial WWTP of biomass heating plant Flachau – Reuse of treated water for internal use and heat recovery

SFC and AQUASMART ACTIVITIES

Water & wastewater treatment

Engineering/Contracting worldwide

ADVANCED TECHNOLOGIES AVAILABLE

- C-MEM membrane ultrafiltration for potable water and wastewater
- C-TECH process for tertiary wastewater treatment, market leader
 - C-ION non-thermal plasma oxidation for special applications

High-rate Ultrafiltration System

WHAT DOES C-MEM STAND FOR?

C-MEM[™] is a hollow fibre ultrafiltration system

Pore size 20.1 nm

Materials

Fibre:High Density Polyethylene HDPECartridge:PE reinforced/PP reinforced/U-PVC /ABS

MEMBRANE

CARTRIDGE

- High packing density
- Safety for membranes
- Higher flux and better CIP efficiency

PRINCIPLE

SUBMERGED SYSTEM

ADVANTAGES

- ✓ Permanently hydrophilic
- ✓ High mechanical strength (QC-pressure test with 4 bar)
- ✓ Chlorine resistant
- Effective mechanical safety for membranes
- High packing density
- ✓ Membrane bundles are replaceable

ADVANTAGES

✓ Technical disinfection

(removal of bacteria and viruses up to log - 6)

- ✓ Pressure applicable from -0.9 to 3 bar
- Low maintenance demand
- ✓ Very low operational costs (e.g. 10 sec aeration per 5 min.)
 - ✓ Very effective chemical cleaning of cartridge
 - ✓ Fully automated system

CONTENT

- 1. Technologies C-MEM, C-TECH and C-ION
- Case Study 1: Reconstruction of industrial WWTP of Bimbo-Tijuana – Reuse of treated water for washing and irrigation
- Case Study 2: Reconstruction of industrial WWTP of biomass heating plant Flachau – Reuse of treated water for internal use and heat recovery

101 C

GRUPO BIMBO

Case Study 1:

Case Study 1:

Raw water composition

- 1. Industrial WW from food production
- 2. Flow of 1 1.5 l/sec
- High loads of COD up to 25,000 ppm – good biodegradability
- 4. High loads of oil, fats and grease
- 5. Lack of nutrients

Existing industrial WWTP:

Case Study 1:

Reason for reconstruction:

- 1. Increased capacity
- 2. High operating costs
- 3. Process problems (Floating sludge)
- 4. No reuse of water

Goals for reconstruction:

- 1. Use of existing concrete structures
- 2. Reuse quality
- 3. Lower operating costs

Reconstruction of industrial WWTP:

Process design:

Case Study 1:

- Redesign to complete continuous flow system after pre-treatment
- → Balancing will be done in raw water collection tank with flow controlled lifting pumps
- → Savings of pumping costs

Case Study 1:

Reconstruction of industrial WWTP:

Process design:

- 2. Redesign of DAF (Dissolved air flotation)
- → Increase of COD removal
- → Increase of fat, oil and grease removal
- → Savings of electrical consumption through high efficiency equipment

Case Study 1:

Case Study 1:

Reconstruction of industrial WWTP:

Process design:

- 3. Redesign of biological process to C-MEM MBR (Membrane bioreactor) incl. selector
- → Improve of sludge quality by selector
- → Increase of efficiency through nutrient dosing (UREA and phosphoric acid)

Case Study 1:

Case Study 1:

Reconstruction of industrial WWTP:

Process design:

- 3. Redesign of biological process to C-MEM MBR (Membrane bioreactor) incl. selector
- → Reuse of existing SBR tank
- → Installation of membrane modules inside bioreactor

Case Study 1:

Case Study 1:

Case Study 1:

Reconstruction of industrial WWTP:

Process design:

- 3. Redesign of biological process to C-MEM MBR (Membrane bioreactor) incl. selector
- → Savings of electrical consumption through full process automation (OUR control) and high efficiency equipment
- → Technically disinfected effluent by ultrafiltration

Case Study 1:

Treated water quality:

	Effluent after C-MEM MBR		up to 130 m³/d
	BOD ₅	mg/l	≤ 25
	COD	mg/l	≤ 200
	TSS	mg/l	≤ 1
	N organic	mg/l	≤ 1
-	NH ₄ -N	mg/l	≤ 2
	NO ₃ -N	mg/l	≤ 15
	T-P	mg/l	≤ 3
	SDI	-	≤ 3

Power consumption:

 \rightarrow 500 – 600 kWh/day

→ 50% less compared to original plant

CONTENT

- 1. Technologies C-MEM, C-TECH and C-ION
- Reconstruction of industrial WWTP of Bimbo-Tijuana – Reuse of treated water for washing and irrigation
- 3. Case Study 2: Reconstruction of industrial WWTP of biomass heating plant Flachau – Reuse of treated water for internal use and heat recovery

Raw water composition

- 1. Industrial WW from biomass heating plant (condensate)
- 2. Flow of up to $5 \text{ m}^3/\text{h}$
- 3. High loads of TSS (ash), heavy metals, nitrogen
- Low amount of carbon (BOD, COD)
- 5. High temperature of up to 50°C

Existing industrial WWTP:

Reason for reconstruction:

- 1. High sewage fees
- 2. No further permit for municipal sewer
- 3. No reuse of water

Goals for reconstruction:

- 1. Use of existing concrete structures
- 2. Reuse of water and heat or direct discharge

Reconstruction of industrial WWTP:

Process design:

- Adding of cooling system for heat recovery and cooling of water
- → Heat will be used for heating of streets in winter
- → Water temperature in further process of less than 30°C required

Reconstruction of industrial WWTP:

Process design:

- Redesign of 2nd sedimentation tank to C-MEM MBBR (Membrane moving bed biofilm reactor)
- \rightarrow Reuse of existing tank
- → Installation of membrane modules inside bioreactor
- → Reuse of treated water of direct discharge to river – no sewage fees

Case Study 2:

Treated water quality:

	Effluent after C- MEM MBBR		up to 70 m³/d
	BOD ₅	mg/l	≤ 3
	COD	mg/l	≤ 10
	TSS	mg/l	≤1
	NH ₄ -N	mg/l	≤1
-	NO ₂ -N	mg/l	≤1
	T-P	mg/l	≤1
	Heavy metals		
	(zinc, copper,		
	mercury,	mg/l	≤1
	0		

Heat recovery:

→ Saving of equivalents of 40 tons of wood per year!

Amortization:

Due to savings of sewage fees it is less than 2 years!

PROJECTS

Condensate wastewater treatment with C-MEM Moving Bed Biofilm Membrane Reactor (MBBR)

References:

- Holzwärme Flachau (Austria)
- R+Z Klagenfurt (Austria)
- Pfeifer Kundl (Austria)
- Utrecht (Netherlands)

For more information please visit our webpage

www.sfcu.at

Thank you very much for your attention.

CONTACT

AQUASMART - Water and Wastewater Treatment Solutions, Lda.

SFC Umwelttechnik GmbH

Luís Marinheiro

Rua do Tronco, 375, Escritório: A1.19 4465-275 S. Mamede de Infesta, Matosinhos Portugal

Email: <u>Imarinheiro@aquasmarttech.com</u> M: +351 919562937

DI(FH) Dr. techn. Simon Jabornig

Julius-Welser-Straße 15 5020 SALZBURG Austria

Email: <u>s.jabornig@sfcu.at</u> M: +43 664 82 90 931